Current Treatment of Femoropopliteal Instent Restenosis

John R. Laird, MD Professor of Medicine Medical Director of the Vascular Center UC Davis Medical Center

SFA In-stent Restenosis

Common: 18%- 40% at 12 months in recent trials
More common in the setting of long SFA occlusions, small diameter SFA, diffuse disease
May be associated with stent fracture or stent overlap

Potential Treatment Options for ISR

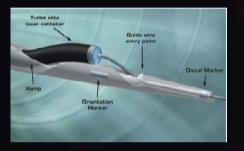
- POBA
- Cutting/scoring balloon
- Cryoplasty
- Drug-eluting balloon
- Brachytherapy
- Debulking
- Restent (BMS or DES)
- Stent graft

POBA vs Cutting Balloon for ISR

- 40 patients randomized to cutting balloon (CB) or POBA for ISR – lesions up to 20 cm in length
- Primary endpoint: Primary patency at 6 months by duplex ultrasound (PSVR > 2.4)
- Clinical success assessed by change in ABI and treadmill walking distance

POBA vs Cutting Balloon for ISR

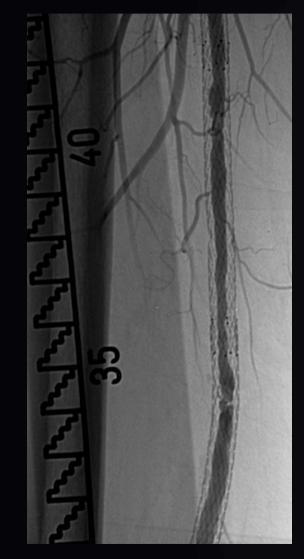
Mean lesion length = 8 cm

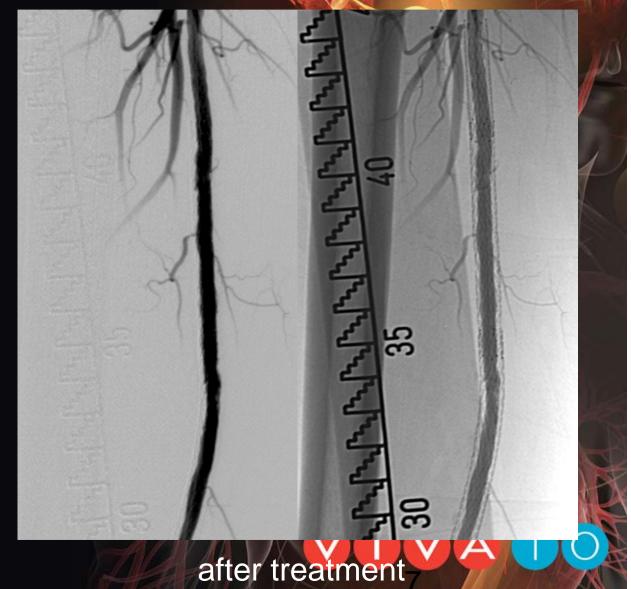

Primary patency at 6 months poor for both groups:

 Cutting balloon 	27% p = ns
– POBA	35%
No difference in walking di	fference:
 Cutting balloon 	103 m
– POBA	117 m p = ns
No difference in ABI	

Debulking for ISR

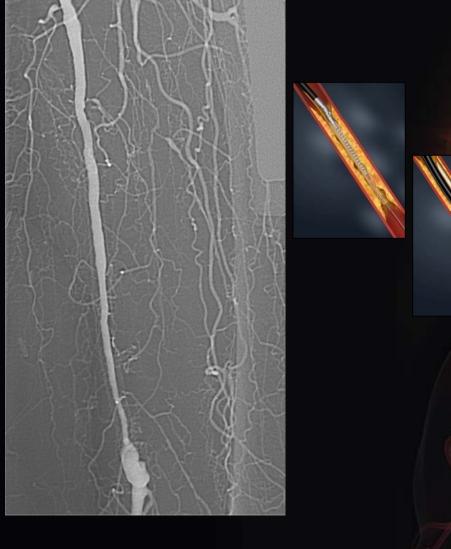
Potential advantages:
Better angiographic and hemodynamic result
Remove thrombus within stent to reduce distal embolization (Laser, Pathway)

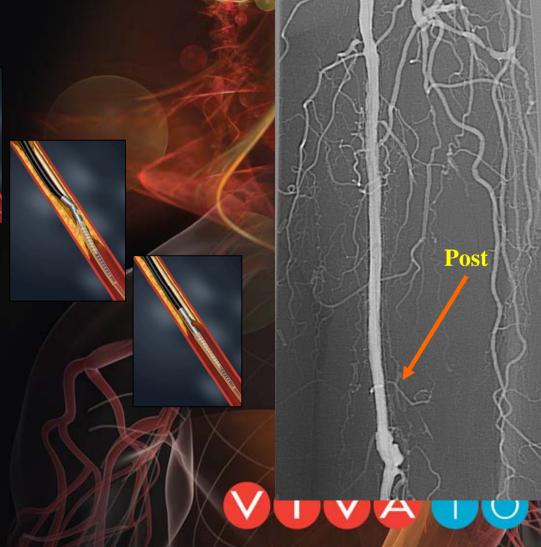




Not FDA approved for treatment of in-stent restenosis.

Result after 2.0mm Turbo Booster-Laser


before


PATENTPhoto-<u>A</u>blation using the <u>Turbo-booster and Excimer</u>
laser for i<u>N-stent restenosis Treatment</u>

EXCITE ISR

Treatment of Femoropopliteal In-Stent Restenosis

Excisional Atherectomy for

Q.

Excisional Atherectomy for ISR

- 43 limbs with femoropopliteal ISR
- Mean lesion length 131 \pm 111 mm
- Additional low pressure balloon inflation in 59%
- Primary patency at 12 months: 54%
- Primary patency at 18 months: 49%

Treatment of ISR: *UC Davis Experience*

- 21 limbs in 20 patients treated over a 2-year period
- Multiple modalities used:
 - Laser and PTA
 - Excisional atherectomy and PTA
 - Cryoplasty
 - Stenting (or stent graft)
 - POBA

52.4% 9.5% 9.5% 19.0% 9.5%

Cath Cardiovasc Interv 2011 (in press)

Treatment of ISR: *UC Davis Experience*

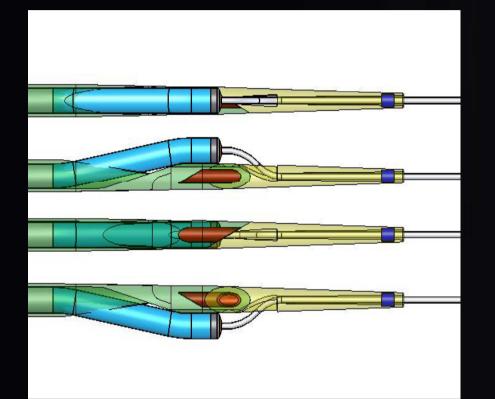
- Pattern of in-stent restenosis
 - -Type 1 (focal)
 - -Type 2 (diffuse)
 - Type 3 (proliferative)
 - -Type 4 (total occlusion)
- Mean lesion length:

23.8% 19.0% 14.3% 42.9% $13.6 \pm 11.4 \text{ cm}$

Cath Cardiovasc Interv 2011 (in press)

Treatment of ISR: UC Davis Experience

- Procedural success in 20/21 limbs (95.2%) igodol
- 12-month duplex obtained in all patients ightarrow
- Primary patency defined as absence of lacksquarereintervention or duplex restenosis (defined as PSVR > 2.0)


– Primary patency:	47.6%
– Secondary patency:	57.1%

(Reintervention deferred for patients with \bullet moderate restenosis and no symptoms)

Cath Cardiovasc Interv 2011 (in press)

Is Debulking Enough?

In-stent Restenosis Following Stent Graft

John R. Laird, MD

Laser/PTA + Viabahn for SFA Single Center Registry Data

- 39 patients undergoing Eximer laser/PTA + Viabahn for in-stent restenosis (62% male; ave. age 58 yrs.)
- Average RC=3 (range 1-6)
- Average stented length 27 cm (range 5-44 cm)
- Average balloon diameter 6 mm (range 3-7 mm)

Laser/PTA + Viabahn 6-month follow-up

- N= 33 (85%)
- 4 lost to follow-up
- 1 death (non-procedure related)
- 1 refused follow-up
- No deaths, amputations, bypasses thru 6 mos.

Primary Patency (DUS) Primary Assisted Patency Occluded 73% 76% 24%

ProSpective Multi-Center Tri<u>AL</u> to EValuate the Safety and Performance of the Spectranetics Laser with Adjunct PTA and <u>GorE</u> Viabahn Endoprosthesis for the Treatment of SFA In-stent Restenosis

Baseline Angiographic Characteristics

Angiographic Characteristics	Enrolled Subjects (n=27)
Pre-procedure target lesion % stenosis by visual estimate (mean \pm SD)	93.2 ± 8.5
Target lesion calcification	
None	14 (51.8)
Mild	9 (33.3)
Moderate	3 (11.1)
Severe	1 (3.7)
Target lesion length (visual estimate), cm (mean \pm SD)	20.7 ± 10.3
Viabahn length, cm (mean \pm SD)	23.8 ± 9.6
Viabahn diameter, cm (mean \pm SD)	5.9 ± 0.4
Viabahn per subject (mean \pm SD)	1.9 ± 0.8
Post-procedure target lesion % stenosis by visual estimate (mean \pm SD)	3.7 ± 5.6

Numbers are presented as n (%), unless otherwise indicated.

Primary Endpoint

Core Lab Reported 12-Month Duplex U/S Patency

Defined as a ratio of ≤ 2.0, measured as the upstream peak systolic velocity (PSV), compared with


PSV in the area of greatest stenosis.

Target Lesion Status at 12 Months	# of Subjects (n= 25*)
Restenotic	12
Patent	11
Unknown**	1
Non-Diagnostic Study _†	1

*1 subject lost to follow-up prior to 12 month follow-up; 1 subject expired between 6 and 12 month follow-up. **Distal SFA stenosis but unable to determine if within target lesion area as stent not clearly visualized. †Media corrupted, unable to read.

DEB or DES for ISR

PaccoCath ISR 1 & 2* PEPPER*

Zilver PTX Registry

FAIR Trial

*coronary

Zilver PTX Registry Lesion Characteristics

Patients	718
Lesions	818
TASC Class*: A	26%
B	29%
C	26%
D	14%
Lesion > 7 cm	47%
Lesion > 15 cm	22%
Total occlusion	38%
Restenosis (all)	24%
In-stent restenosis (ISR)	15%

*TASC 2000

Freedom From TLR

Subgroup	12 Months	24 Months
Overall	89% (n = 818)	82% (n = 427)
De novo (all)	91%	88%
<u><</u> 7-cm lesions	94%	91%
> 7-cm to 15-cm lesions	92%	86%
> 15-cm lesions	84%	80%
TASC C and D*	87%	78%
Occlusions	86%	77%
Stenosis	90%	85%
Restenosis (all)	81%	70%
Restenosis (not ISR)	87%	73%
In-stent restenosis (ISR)	78%	69%

*TASC 2000

Summary

- PTA alone ineffective for diffuse ISR
- Improved but not optimal results with debulking and adjunctive PTA
- Local drug delivery (DEB or DES) with or without debulking offers the most promise for improved long-term results

